首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70085篇
  免费   8116篇
  国内免费   4546篇
电工技术   2105篇
综合类   4829篇
化学工业   17123篇
金属工艺   7698篇
机械仪表   2672篇
建筑科学   7399篇
矿业工程   1457篇
能源动力   2121篇
轻工业   3115篇
水利工程   678篇
石油天然气   1119篇
武器工业   1030篇
无线电   5059篇
一般工业技术   21590篇
冶金工业   2950篇
原子能技术   431篇
自动化技术   1371篇
  2024年   172篇
  2023年   1371篇
  2022年   1792篇
  2021年   2515篇
  2020年   2815篇
  2019年   2449篇
  2018年   2256篇
  2017年   2732篇
  2016年   2731篇
  2015年   2673篇
  2014年   3716篇
  2013年   3920篇
  2012年   4723篇
  2011年   5507篇
  2010年   4173篇
  2009年   4498篇
  2008年   3835篇
  2007年   4837篇
  2006年   4373篇
  2005年   3855篇
  2004年   3080篇
  2003年   2779篇
  2002年   2300篇
  2001年   1875篇
  2000年   1497篇
  1999年   1164篇
  1998年   1015篇
  1997年   793篇
  1996年   671篇
  1995年   557篇
  1994年   491篇
  1993年   397篇
  1992年   269篇
  1991年   243篇
  1990年   176篇
  1989年   136篇
  1988年   78篇
  1987年   50篇
  1986年   31篇
  1985年   30篇
  1984年   43篇
  1983年   22篇
  1982年   33篇
  1981年   7篇
  1980年   23篇
  1979年   11篇
  1976年   3篇
  1956年   2篇
  1955年   4篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
《工程爆破》2022,(4):78-84
介绍了在包头市某工程实施管道穿越黄河施工中,采用爆破法处理卡钻的经验。针对深水环境条件及钻杆内径小不宜采用集团装药的条件,确定采用"小直径爆破筒,钻杆内部装药"的爆破方案,阐述了爆破设计及施工注意事项。可供类似工程参考。  相似文献   
2.
分析了静电产生的原因,阐述了粉体含能材料生产中的静电起电现象、静电的危害、静电安全性评估标准以及建立在此标准基础上的静电放电危险的评价办法,提出了粉体含能材料在生产、运输中所需要采取的静电防护措施。  相似文献   
3.
Low-thermal conductivity ceramics play an indispensable role in maximizing the efficiency and durability of hot end components. Pyrochlore, particularly zirconate pyrochlore, is currently a highly promising and widely studied candidate for its extremely low thermal conductivity. However, there are still few pyrochlores that offer both stiffness, insulation, and good thermal expansion properties. In this work, the solidification method was innovatively introduced into the preparation of titanate pyrochlore, and combined it with the compositional design of high-entropy. Through careful composition design and solidification control, the high-density and uniform elements distributed high-entropy titanate pyrochlore ceramics were successfully prepared. These samples possess high hardness (15.88 GPa) and Young’s modulus (295.5 GPa), low thermal conductivity (0.947 W·m?1·K?1), excellent thermal expansion coefficient (11.6 ×10?6/K) and an exquisite balance between stiffness and insulation (E/κ, 312.1 GPa·W?1·m·K), in which the E/κ exhibits the highest value among the current reported works.  相似文献   
4.
《Ceramics International》2022,48(8):10506-10515
The search for materials and methods capable of reducing human impacts on the environment is of utmost importance nowadays. This study's primary purpose was to analyze the technical feasibility of ceramic composites production utilizing Fundão Dam's Iron Ore Tailings (IOT), Blast Furnace Slag (BFS) from charcoal, and Foundry Sand (FS) as partial substitutes for the traditional raw materials – sand and clay – for application in building industry materials. The composites were molded in rectangular specimens and fired at temperatures of 900, 950, 1000, 1050, and 1200 °C. The developed materials were analyzed and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Thermogravimetry (TGA), and Differential Thermal Analysis (DTA). The obtained materials had flexural strength modulus of up to 12.19 MPa, water absorption ranging from 2 to 22%, linear shrinkage ranging from 0.02 to 6.50%, and apparent density ranging from 2.03 to 1.63 g/cm3. The study of the internal structure formation process revealed the formation of amorphous structures in the composites. The results demonstrated that these waste materials may be jointly used in construction materials, contributing to the reduction of natural resource extraction, besides enabling their correct disposal, minimizing environmental impacts, and improving the life quality of the surrounding communities.  相似文献   
5.
《Ceramics International》2022,48(17):24157-24191
Great progress in the development of low-cost ceramic membranes from alternative materials have been achieved recently towards various application especially water and wastewater treatment. However, their significance has not been fully recognized and understood especially in term of their microstructural analysis such as formation of grain growth and microcracks. This review paper summarizes fabrication method, alternative materials, microstructure, wettability, mechanical properties and application of low-cost ceramic membrane. The fabrication method including slip casting, tape casting, extrusion, pressing method and phase inversion technique are described. Alternative materials used in low-cost ceramic membrane fabrication are discussed and categorized into clays, agricultural waste, industrial waste and animal bone waste. The mechanisms of morphology formation, microstructure and wettability properties are analysed. Modification strategies for the surface of low-cost ceramic membrane are discussed, and classified into modification for separation application, modification for photocatalytic application and modification for membrane distillation and membrane contactor system. Modification improves the membrane structure by changing the pore size, porosity and wettability properties of low-cost ceramic membranes. Mechanical properties of low-cost ceramic membranes are also discussed in detail towards several mechanism, like grain growth phenomenon and formation of microcracks which also considered as membrane defects. Grain growth phenomenon can be divided into normal and abnormal grain growth. Meanwhile, formation of microcracks could be occurred in single-phase polycrystalline ceramics that have anisotropic grains or biphasic polycrystalline grains. The application of low-cost ceramic membrane in seawater desalination, oily wastewater treatment, heavy metal adsorption, textile separation and photocatalytic application are reviewed. Finally, some possible opportunities and challenges for further development of low-cost ceramic membrane are pointed out.  相似文献   
6.
Dark fermentation of sugarcane vinasse can be used as a “cleaning” step to remove sulfate prior to methanogenesis because sulfidogenic conditions can be successfully established in parallel with biohydrogen production. Using a 22 central composite rotational design (CCRD) and response surface methodology (RSM), this study assessed the impacts of bicarbonate and sulfate availability on the establishment of sulfidogenesis in the thermophilic (55 °C) fermentation of vinasse in batch reactors, equally assessing the impacts on biohydrogen evolution. CCRD-RSM results indicated the favoring of biohydrogen production at the lowest sulfate and bicarbonate concentrations, whilst the opposite was observed for sulfidogenesis. Glycerol, lactate, and hydrogen were the preferential electron donors utilized by sulfate-reducing bacteria (SRB), whilst ethanol was markedly consumed only at high sulfate concentrations. SRB were inhibited by sodium when dosing excess NaHCO3 and Na2SO4. Complementary tests revealed maximum biohydrogen production (2.40 mmol) out of the CCRD, at pH exceeding 7.5 with no interference of sulfidogenesis. Non-efficient biohydrogen production was observed at low pH (<5.0; ~1.90 mmol) because the uptake of lactate was inhibited. Meanwhile, homoacetogenesis was established under intermediate pH range (5.5–6.5), as revealed by the accumulation of acetate (up to 2.5 g L?1). 16S rRNA gene amplicon sequencing further revealed the genera Thermoanaerobacterium/Pseudoclostridium, Desulfotomaculum/Desulfohalotomaculum and Sporomusaceae/Moorella as the main biohydrogen-producing, sulfate-removing and biohydrogen-consuming (homoacetogens) microbial groups, respectively. Hence, using a single inoculum source, vinasse may provide a butyrate-rich (along with biohydrogen-rich biogas) or a sulfate-free and acetate-rich fermented effluent, depending mainly on proper pH control.  相似文献   
7.
Hydrogen adsorption performance and mechanism upon cycling of the upscaled Ni-doped hierarchical carbon scaffold (HCS) are investigated. Upon 22 hydrogen ad/desorption cycles (T = 25–50 °C and p (H2) = 1–50 bar), the upscaled Ni-doped HCS shows excellent cycling stability with gravimetric capacity of up to 1.51 wt % H2. This is due to mechanical stability of HCS and good distribution of Ni nanoparticles. Hydrogen adsorption mechanism of Ni-doped HCS upon cycling is experimentally and theoretically characterized. Besides dissociative adsorption onto the surface, hydrogen diffusion into the lattice structure of Ni is observed. The latter enhances with the number of ad/desorption cycles and alters the electron sharing mechanisms between Ni and H during adsorption.  相似文献   
8.
《Ceramics International》2022,48(24):36620-36628
In order to solve the problem of low charging and discharging energy density of dielectric capacitors, the structure design of layered polymer matrix composites is carried out in this paper. Ba0.7Sr0.3TiO3, Ba0.8Sr0.2TiO3 and Ba0.9Sr0.1TiO3 nanoparticles were successfully prepared by the oxalate coprecipitation method. The surface of BaxSr1-xTiO3 was successfully coated with dopamine, which promoted the dispersion of the polymer matrix of the ceramic powder. Monolayer BaxSr1-xTiO3/PVDF composites containing BaxSr1-xTiO3 with different Ba/Sr ratios were successfully prepared by the casting method. Three-layer asymmetric composites with different fillers were successfully prepared by layer-by-layer casting. The phase and microstructure of the as-prepared materials were analyzed by XRD and SEM. The dielectric, electrical conductivity, ferroelectric and energy storage properties of the composites were tested. The effects and laws of the design of the three-layer asymmetric structure on the dielectric properties and energy storage properties of the layered composites are mainly studied. When the structure of the three-layer asymmetric composite is 1-2-3, the breakdown field strength reaches 330 kV/mm, the discharge energy density reaches 8.51 J/cm3, and the charge-discharge efficiency is 67%. This work demonstrates that layered composites with asymmetric properties can facilitate the development of electrical energy storage.  相似文献   
9.
《Ceramics International》2022,48(21):31995-32000
Among the existing material family of the correlated oxides, the rare earth nickelates (ReNiO3) exhibit broadly adjustable metal to insulator transition (MIT) properties that enables correlated electronic applications, such as thermistors, thermochromics, and logical devices. Nevertheless, how to accurately control the critical temperature (TMIT) of ReNiO3 via the co-occupation of the rare-earth elements is yet worthy to be further explored. Herein, we demonstrate the non-linearity in adjusting the TMIT of ReNiO3 towards lower temperatures via introducing Pr co-occupation within ReNiO3 (e.g., PrxNd1-xNiO3 and PrxSm1-xNiO3) as synthesized by KCl molten-salt assisted high oxygen pressure reaction approach. Although the TMIT is effectively reduced via Pr substitution, it does not strictly follow a linear relationship, in particular, when there is large difference in the ionic radius of the co-occupation rare-earth elements. Furthermore, the most significant deviation in TMIT from the expected linear relationship appears at an equal co-occupation ratio of the two different rare-earth elements, while the abruption in the variation of resistivity across TMIT is also reduced. The present work highlights the importance to use adjacent rare-earth elements with co-occupation ratio away from 1:1 for achieving more linear adjustment in designing the metal to insulator transition properties for ReNiO3.  相似文献   
10.
三维异质异构集成技术是实现电子信息系统向着微型化、高效能、高整合、低功耗及低成本方向发展的最重要方法,也是决定信息化平台中微电子和微纳系统领域未来发展的一项核心高技术。文章详细介绍了毫米波频段三维异质异构集成技术的优势、近年来的发展趋势以及面临的挑战。利用硅基MEMS 光敏复合薄膜多层布线工艺可实现异质芯片的低损耗互连,同时三维集成高性能封装滤波器、高辐射效率封装天线等无源元件,还能很好地处理布线间的电磁兼容和芯片间的屏蔽问题。最后介绍了一款新型毫米波三维异质异构集成雷达及其在远距离生命体征探测方面的应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号